

You make possible

IOS-XE Troubleshooting Hands-on Lab

Olivier Pelerin, Technical Leader Michal Stanczyk, Technical Leader Wen Zhang, Technical Leader

LTRARC-3500

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion" -
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Agenda

- Introduction to IOS-XE Platform Software/Hardware
 Architecture
 - Resource Consumption Monitoring
- Day in the Life of a Packet
 - Data Plane Packet Tracing
- Troubleshooting strategy and Tools
 - Embedded Packet Capture
 - Understanding and Extracting Platform Logs
- Hands-on Lab exercise
- Wrapping up...

Session Objectives

- To understand IOS-XE (ASR1k, ISR4k, CSR1Kv) Platform Architecture
 - Software
 - Hardware
 - Feature implementations
- Understand how features process packets through IOS-XE
- To demonstrate a systematic Troubleshooting Strategy
- To showcase various troubleshooting Tools and Capabilities
- To provide a Hands-on experience on how to effectively troubleshoot the platform using these tools

Related Sessions

• BRKCRS-3147

Advanced troubleshooting of the ASR1K and ISR (IOS-XE) made easy

- Olivier Pelerin Technical Leader, Services
- Frederic Detienne Distinguished Engineer, Services

LABRST-2400
 Packet Capturing Tools in Routing Environments WISP Lab

ASR Series Hardware Architecture

ASR1000 Building Blocks

Houses SPA's Queues packets in & out (FIFO)

cisco /

System Architecture Forwarding Plane

cisco / ile

cisco Live!

ISR4000 Series Hardware Architecture


```
ISR 4451-X (ISR4451)
```


cisco live!

ISR 4300 & 4200

cisco live!

BQS - Where the Performance Shaper lives

LTRARC-3500 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public

18

Performance License bit counter view

What it sees:

• Packets coming in from PPEs

Crypto

assist

assist

- Packets addressed for external interfaces
- No difference between LAN or WAN interface

cisco /

Looking for indications of exceeding license

Oversubscribed ISR4k lab router

#show plat hard qfp active datapath utilization

#show plat hard qfp active statistics drop

Global Drop Stats	Packets	Octets
TailDrop	4395	6634970

Looking for indications of exceeding license Oversubscribed ISR4k lab router - showing oversubscribed interfaces

Acronyms

For Your Reference

- RP Route Processor
- FP Forwarding Processor = ESP (Embedded Service Processor)
- CPP Cisco Packet Processor Complex= QFP (Quantum Flow Processor)
- PPE Packet Processing Engine
- IOCP I/O Control Processor
- FECP Forwarding Engine Control Processor
- SPA Shared Port Adapter
- SIP SPA Interface Processor
- IOSd IOS image that runs as a process on the RP
- FMAN Forwarding manager (FMAN-RP, FMAN-FP)
- EOBC = Ethernet Out of Band Channels Packet Interface for Card to Card Control Traffic
- IOS-XE (BinOS) = Linux Based Software Infrastructure for IOS-XE

ASR1000 Software Architecture

ASR1K Software Architecture

Forwarding Manager (FMAN)

- FMAN on RP communicates with FMAN process on ESP
 - Distributed function
- Propagates control plane ops. to ESP
 - CEF tables, ACL's, NAT, SA's,...
- FMAN-FP communicates information back to FMAN-RP
 - e.g. statistics
 - FMAN-RP pushes info back to IOS
- FMAN on active RP maintains state for both active & standby ESP's
 - Facilitates NSF after re-start with bulk download of state information

PPE Microcode

- Written in C
 - Proper features, no hack
- Runs on each thread of the PPE
- Processes packets
 - Run to completion
 - Assisted by various memories
 - TCAM, DRAM, ... various speeds
- Features applied via FIA
 - Feature Invocation Array
- FIA per interface
 - Input FIA, output FIA
 - Drop FIA (Null interface)

ASR1000 vs ISR4000

cisco live!

Resource Monitoring

The Vital Signs...

Example: IOS Memory vs RP Memory Utilization

QFP Memory Utilization It gets worse...

			InUse: 8728 Free: 12548	576 9152	
asr-1k#show platform hardware qu	fp active infrastructure exme	m statistics user	Lowest free Type: Name: SI	water mark: 1254893 RAM, QFP: 0	152
 10 279092 28467: 40 36441494 364584	2 CEF 196 NAT		Total: 3276 InUse: 1508 Free: 17680 Lowest free	3 3 water mark: 17680	
asr-1k#show platform hardware go Load for five secs: 0%/0%; one r Time source is NTP, 09:43:55.07	fp active tcam resource-manag minute: 1%; five minutes: 1% 5 EDT Fri Apr 25 2014	er usage	ESP	FECP	Ch
QFP TCAM Usage Information <snip></snip>				Drivers	
Total TCAM Cell Usage Informatio	nc				
Name Total number of regions Total tcam used cell entries Total tcam free cell entries	: TCAM #0 on CPP #0 : 3 : 28 : 524260				QFP BQ
Infeshold Status	: Derow Critical limit			TCAM	DRAN

cisco live!

nager

Crypto

Assist.

DRAM

rnel

asr-1k#show platform hardware qfp active infrastructure exmem statistics

OFP exmem statistics

Type: Name: DRAM, QFP: 0 Total: 1073741824 InUse: 219466752 Free: 854275072

Type: Name: IRAM, QFP: 0 Total: 134217728

Lowest free water mark: 854005760

Resources - A Simplified View

asr-1k# show platform resources Warning Critical Resource Usage Max State RP0(ok, active) Η Control Processor 5.80% 100% 90% 95% Η 1814MB 3783MB 90% 95% DRAM Н ESP0(ok, active) Н Control Processor 19.89% 100% 90% 95% Н DRAM 683MB 1962MB 90% 95% Η QFP Н 76244KB 524288KB 80% 90% DRAM Η TRAM 8817KB 131072KB 80% 90% Η SRAM 32KB 80% 90% Н 14KB 28cells 131072cells 80% 90% Η TCAM CPU Utilization 7.00% 100% 90% 95% Η ESP1(ok, standby) Η Control Processor 19.89% 100% 90% 95% Н DRAM 68.3MB 1962MB 90% 95% Η OFP Н 76244KB 524288KB 80% 90% DRAM Η 8817KB 131072KB 80% 90% IRAM Η SRAM 14KB 32KB 80% 90% Η TCAM 28cells 131072cells 80% 90% Η CPU Utilization 0.00% 100% 90% 95% Н STP0 Η Control Processor 4.10% 100% 90% 95% Н DRAM 307MB 460MB 90% 95% Н SIP1 Η Control Processor 1.10% 100% 90% 95% Η 160MB 460MB 90% 95% DRAM Η **State Acronym: H - Healthy, W - Warning, C - Critical

CISCO

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public LTRARC-3500

35

Introduced in IOS-XE 3.14

Other Show Commands Improvements Improves interaction with TAC

cisco / ile

Lab Access

- 1. Use AnyConnect and log in to the dCloud environment.
- 2. Open the Cisco CLI Analyzer Telnet/SSH Client and log in

Master Password: cisco!123

- 3. Create a new session for each of the devices in your POD
 - Click on "Devices"
 - Enter the search term "LTRARC-3500" and press Enter
 - Click on the device name to connect, use the below credentials:
 Username: cisco

Password: cisco

• Click on "Devices" and connect to the remaining devices

cisco ile

Day in the Life of a Normal Packet

Ingress Packet Through SIP

LTRARC-3500 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 40

Packet Dispatched to PPE Thread

ESP

FECP

QFP

PPE BQS intercon.

FIA's Applied on Packet by PPE Thread

44

FIA's Applied on Packet by PPE Thread

Packet Proceeding to BQS then SIP

Egress Packet Through SIP

SIP intercon.

Punt Path: From QFP to Internal Destination

Punt Path: From QFP to Internal Destination

Inject Path: From RP via QFP to the network

Inject Path: Recycling packet via QFP to network

Packet-tracer and FIA Debugger

The Packet Tracer and FIA Debugger

X-Connect MPLS IPv6 Packet #16 Condition determines packets to be traced Input ACL Output FIA Input FIA Optionally match Pak Match ? MQC Classify on the egress FIA NAT **Output ACL** Input ACL **PBR** NAT MQC Classify **Output ACL** Encaps NAT IP Unicast NAT Statistics and final action will be PBR collected (matched packets dropped, punted to RP, forwarded to Encaps output interface ...) Thread 3 Crypto Optionally, FIA actions can logged per packet System can capture several packets flows **RPs RPs RPs** FSP Packet flows can be reviewed in show commands

Introduced in IOS-XE 3.10

Packet-Trace: Accounting

- Accounting keeps a count of all packet-trace interesting packets that enter and leave the "packet processor".
- Three basic count groups.
 - Summary Counts
 - Packets Matched –packets that matched conditions
 - · Packets Traced packets that were traced
 - Arrival Counts
 - Ingress packets entering via external interfaces
 - Inject* number of packets seen as injected from control plane
 - Departure Counts
 - Forward number of packets scheduled/queued for delivery
 - Punt* number of packets punted to control plane
 - Drop* number of packets specifically dropped by packet processing
 - Consume number of packets consumed during packet process (e.g. ping request)

Packet-Trace: Summary Data

- Summary data is collected for a specified number of packets and includes:
 - Packet number (packet-trace specific packet number)
 - Input interface
 - Output interface
 - Final packet state and any punt/drop/inject codes
- Collecting summary data uses little performance over the normal packet processing
- Example usage:
 - To isolate which interfaces are dropping traffic so more detailed inspection can be used after applying interface specific conditions.

Packet-Trace: Path Data

- Path data may be collected per packet and is made up of different types of data:
 - Common path data (e.g. IP tuple)
 - Feature specific data (e.g. NAT)
 - Feature Invocation Array (FIA) trace optionally enabled
 - Copy of all or part of the incoming and/or outgoing packet optionally enabled
- Capturing path data with FIA trace and packet copy has the greatest impact on packet processing
 - FIA tracing creates many path data entries costing instructions and DRAM writes
 - Packet copy creates many DRAM read/writes
- Packet-trace will only affect the performance of packets traced (i.e. those matched by the user provided conditions)

Debugging Strategies

cisco ive!

Everyday Situations

cisco live!

Everyday Situations

cisco ive!

Everyday Situations

cisco live!

Debugging Strategies to Date

cisco / ille

New Debugging Strategy

IOSd Control Plans

- show interface, show ip route, show bgp ...
- Feature debugging

Platform Control Plane

- Unified show commands
- Platform show commands
- Future: control plane conditional debugging

Data Plane

- Packet Tracer
- Forwarding plane conditional debugging
- Embedded Packet Capture

Troubleshooting Tools and Capabilities

Embedded Packet Capture

The Embedded Packet Capture One way of capturing packets...

- Shows whether packets have been received or sent
- Shows what packets look like
- Excellent tool but insufficient
- Requires export to decoder
- Config and decode made easy with

Device#	monitor	capture	mycap	start
Device#	monitor	capture	mycap	access-list v4acl
Device#	monitor	capture	mycap	limit duration 1000
Device#	monitor	capture	mycap	interface GigabitEthernet 0/0/1 both
Device#	monitor	capture	mycap	buffer circular size 10
Device#	monitor	capture	mycap	start
Device#	monitor	capture	mycap	export tftp://10.1.88.9/mycap.pcap
Device#	monitor	capture	mycap	stop

Device# show monitor capture mycap buffer dump

0					
0000:	01005E00	00020000	0C07AC1D	080045C0	^E.
0010:	00300000	00000111	CFDC091D	0002E000	.0
0020:	000207C1	07C1001C	802A0000	10030AFA	*
0030:	1D006369	73636F00	0000091D	0001	example

 0000:
 01005E00
 0002001B
 2BF69280
 080046C0

 0010:
 00200000
 00000102
 44170000
 0000E000

Introduced in IOS-XE 3.7

https://cway.cisco.com/tools/CaptureGenAndAnalyse/

1

0020: 000207C1 07C1001C 88B50000 08030A6En 0030: 1D006369 73636F00 0000091D 0001 ..example.....

Embedded Packet Capture

- EPC added to FIA
 - Beginning of ingress FIA
 - End of egress FIA
- Matched packets are copied
- Copied packets get punted to RP
- Original packets processed as usual
- Capture buffer on RP can be exported to .pcap file

Use EPC to Troubleshoot Packet Corruptions An Use Case Study of Data Collection Automation

• IPSec integrity check makes it sensitive to packet corruption in the network

%CRYPTO-4-RECVD PKT MAC ERR: decrypt: mac verify failed for connection id=695 local=192.168.14.2 remote=192.168.13.2 spi=7C4E759F seqno=00000001

- Problem Challenges:
 - Highly intermittent
 - · Requires Packet Capture on both ends to prove network corruption
- Solution
 - Run continuous EPC with a circular buffer on both tunnel end points
 - Use EEM with SNMP to synchronize and stop capture on both sides
 - · Notify the network administration by email
 - Upload and examine both captures for evidence of corruption

cisco /

cisco / i

cisco / ille

© 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 80 LTRARC-3500

EPC in real life: configs

left-peer#show run se event snmp-server enable traps event-manager	IPS	
snmp-server host 10.10.10.1 public event-manager event manager applet detect_bad_packet event syslog pattern " IPSEC-3-HMAC_ERROR " action 1.0 cli command "enable" action 2.0 cli command "monitor capture stop test" action 3.0 syslog msg "Packet corruption detected and capture stopped!" action 4.0 snmp-trap intdata1 123456 strdata ""	∋ 1142	right-peer#show run se event event manager applet detect_bad_packet event snmp-notification oid 1.3.6.1.4.1.9.10.91.1.2.3.1.9. oid-val "123456" op eq src-ip-address 10.10.10.2 action 1.0 cli command "enable" action 2.0 cli command "monitor capture stop test" action 3.0 syslog msg "Packet corruption detected and capture stopped!"
*Jan 14 21:34:51.639: %IPSEC-3-HMAC_ERROR: IPSec SA receives HMAC error, DP Handle 1142, src_addr 10.10.10.1, dest_addr 10.10.10.2 X, SPI 0xABCDEF *Jan 14 21:34:51.858: %BUFCAP-6-DISABLE: Capture Point test disabled. left-peer# *Jan 14 21:34:51.860: %HA_EM-6-LOG: detect_bad_packet: Packet corruption detected and capture stopped!	P tr	right-peer# *Jan 14 21:34:52.337: %HA_EM-6-LOG: detect_bad_packet: Packet corruption detected and capture stopped! right-peer#

cisco ive!

Understanding and Extracting Platform Tracelogs

cisco ile

Platform Tracing and Logging

cisco live

Important Logs

What log files are important?

- Important log files to get for security issues:
 - fman_rp_R[0|1].log (under /tmp/rp/trace directory on RP)
 - fman-fp_F[0|1]-0.log (under /tmp/fp/trace directory on ESP
 - cpp_cp_F[0|1]-0.log (under /tmp/fp/trace directory on ESP)
- All these logs get rotated and are copied to /harddisk/tracelogs directory on active RP.
- Look for the relevant log files depending on the time of the failure
- By default, all ERR messages are logged → should be the first things to look for

Important Logs

cisco / ile
New Logging Framework: Show logging process

Show logging process <process name> internal

#csr1000v-1# show logging process fman internal excuting cmd on chassis local ... Collecting files on current[local] chassis. Total # of files collected = 4 Decoding files: /harddisk/tracelogs/tmp_trace/fman_fp_F0-0.21047_0.20180109071524.bin: DECODE(592:0:592:10) /harddisk/tracelogs/tmp_trace/fman_rp_R0-0.14852_0.20180109071523.bin: DECODE(21:0:21:11) /harddisk/tracelogs/tmp_trace/fman_rp_pmanlog_R0-0.14682_0.20180109071455.bin: DECODE(25:0:25:1) /harddisk/tracelogs/tmp_trace/fman_fp_image_pmanlog_F0-0.20738_0.20180109071508.bin: DECODE(28:0:28:1) <.....decoded files>

New Logging Framework: Show logging profile

Show logging profile <profile name> internal csr1000v-1# *show logging profile iwan internal* executing cmd on chassis local ... Collecting files on current[local] chassis. Total # of files collected = 16 Decoding files: 2018/01/09 07:14:55.770 {fman_rp_pmanlog_R0-0}{1}: [fman_rp_pmanlog] [14682]: (note): gdb port 9905 allocated 2018/01/09 07:14:55.812 {fman_rp_pmanlog_R0-0}{1}: [fman_rp_pmanlog] [14682]: (note): swift_repl port 8005 allocated 2018/01/09 07:14:55.882 {fman rp_pmanlog_R0-0}{1}: [fman rp_pmanlog] [14682]: (info): (std): /tmp/sw/rp/0/0/rp_security/mount/usr/binos/conf/pman.sh: line 424: sigusr1_func: readonly function 2018/01/09 07:14:55.902 {fman_rp_pmanlog_R0-0}{1}: [fman_rp_pmanlog] [14682]: (note): process scoreboard /tmp/rp/process/fman_rp%rp_0_0%0 fman_rp%rp_0_0%0.pid is 1458 22018/01/09 07:14:55.902 {fman_rp_pmanlog_R0-0}{1}: [fman_rp_pmanlog] [14682]: (note): fman_rp%rp_0_0%0.gdbport is 9905 2018/01/09 07:14:55.902 {fman_rp_pmanlog_R0-0}{1}: [fman_rp_pmanlog] [14682]: (note): fman_rp%rp_0_0%0.swift_replport is 8005

Wrapping up...

cisco live!

Key Session Takeaways

- IOS-XE Platforms are complex but troubleshooting doesn't have to be
 - Use Resource Monitoring for consolidated view of system health
 - Use the **platform CPU/memory command variant** for in-depth resource check
- Detailed Discussion on Packet Forwarding
 - Data plane Packet Tracing is your friend!
 - Use the right tool for the job!
- Discussed Troubleshooting Strategy and Tools
 - Control vs. Data Plane
 - Embedded Packet Capture
 - Leverage Platform Logs for in-depth troubleshooting
 - End-to-end platform **debugging workflow** and strategies

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.com</u>.

Continue your education

cisco / ile

Thank you

cisco live!

You make **possible**